Search results

Search for "rutile surfaces" in Full Text gives 6 result(s) in Beilstein Journal of Nanotechnology.

Tin dioxide nanomaterial-based photocatalysts for nitrogen oxide oxidation: a review

  • Viet Van Pham,
  • Hong-Huy Tran,
  • Thao Kim Truong and
  • Thi Minh Cao

Beilstein J. Nanotechnol. 2022, 13, 96–113, doi:10.3762/bjnano.13.7

Graphical Abstract
  • –215, Copyright (2018), with permission from Elsevier. This content is not subject to CC BY 4.0. (a) Natural growth faces of SnO2 are the (110), (100) (equivalent to (010) in rutile), and (101) (equivalent to (011) in rutile) surfaces. Figure 4a was reprinted with permission from [48] (M. Batzill; K
PDF
Album
Review
Published 21 Jan 2022

Interface interaction of transition metal phthalocyanines with strontium titanate (100)

  • Reimer Karstens,
  • Thomas Chassé and
  • Heiko Peisert

Beilstein J. Nanotechnol. 2021, 12, 485–496, doi:10.3762/bjnano.12.39

Graphical Abstract
  • components (e.g., in N 1s spectra) for the TMPcs on STO(100) may point to a comparably defect-free surface. The cleavage of some intramolecular C–F bonds of TMPcF16 was observed at both STO(100) and defect-rich rutile surfaces. Since not all C–F bonds are broken, this reaction occurs only at particular sites
PDF
Album
Supp Info
Full Research Paper
Published 21 May 2021

TiOx/Pt3Ti(111) surface-directed formation of electronically responsive supramolecular assemblies of tungsten oxide clusters

  • Marco Moors,
  • Yun An,
  • Agnieszka Kuc and
  • Kirill Yu. Monakhov

Beilstein J. Nanotechnol. 2021, 12, 203–212, doi:10.3762/bjnano.12.16

Graphical Abstract
  • . However, the resulting formation of W3O9 by thermal WO3 evaporation under UHV conditions differs significantly from other WO3 deposition techniques. For example, the formation of hydrated tungsten acid species could be demonstrated by electrochemical evaporation of tungsten oxide on rutile surfaces under
PDF
Album
Full Research Paper
Published 16 Feb 2021

Adsorption behavior of tin phthalocyanine onto the (110) face of rutile TiO2

  • Lukasz Bodek,
  • Mads Engelund,
  • Aleksandra Cebrat and
  • Bartosz Such

Beilstein J. Nanotechnol. 2020, 11, 821–828, doi:10.3762/bjnano.11.67

Graphical Abstract
  • . In our previous work [14], the adsorption process of SnPc on the (011) face of rutile TiO2 was studied by microscopic methods. Up to a monolayer, SnPc molecules exhibit comparable behavior on both rutile surfaces including the observation of a very short residence time under the tip apex at room
PDF
Album
Supp Info
Full Research Paper
Published 26 May 2020

Ordering of Zn-centered porphyrin and phthalocyanine on TiO2(011): STM studies

  • Piotr Olszowski,
  • Lukasz Zajac,
  • Szymon Godlewski,
  • Bartosz Such,
  • Rémy Pawlak,
  • Antoine Hinaut,
  • Res Jöhr,
  • Thilo Glatzel,
  • Ernst Meyer and
  • Marek Szymonski

Beilstein J. Nanotechnol. 2017, 8, 99–107, doi:10.3762/bjnano.8.11

Graphical Abstract
  • conditions. Keywords: dye-sensitized solar cells; molecular nanostructures; phthalocyanines; porphyrins; rutile surfaces; STM imaging; Introduction There is an increasing interest in optoelectronic applications of organic molecular heterostructures which utilize inorganic substrates, such as titanium
PDF
Album
Full Research Paper
Published 11 Jan 2017

Scanning probe microscopy studies on the adsorption of selected molecular dyes on titania

  • Jakub S. Prauzner-Bechcicki,
  • Lukasz Zajac,
  • Piotr Olszowski,
  • Res Jöhr,
  • Antoine Hinaut,
  • Thilo Glatzel,
  • Bartosz Such,
  • Ernst Meyer and
  • Marek Szymonski

Beilstein J. Nanotechnol. 2016, 7, 1642–1653, doi:10.3762/bjnano.7.156

Graphical Abstract
  • a wetting layer of ZnTPP molecules deposited on TiO2(011) [49]. We have already discussed the results of experiments on both CuPc and ZnTPP molecules deposited onto rutile surfaces [33][43][56]. In the former case, the CuPc molecules formed a wetting layer of flat-lying molecules on which ordered
PDF
Album
Commentary
Published 09 Nov 2016
Other Beilstein-Institut Open Science Activities